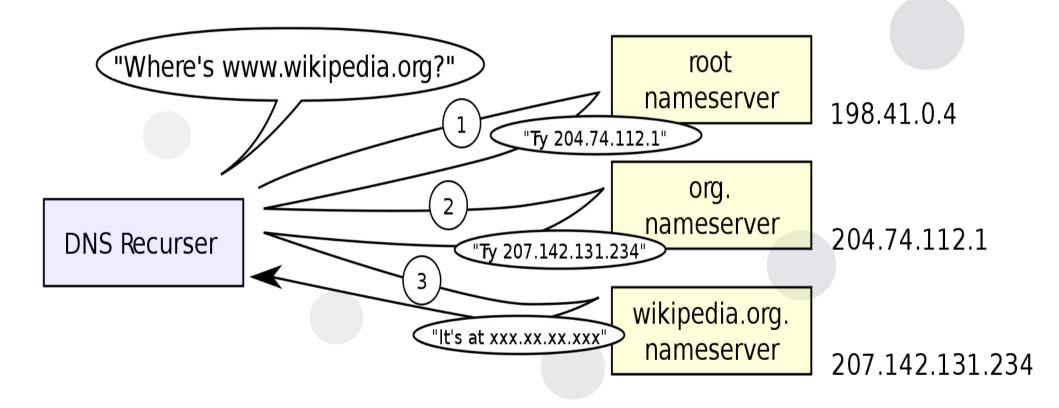
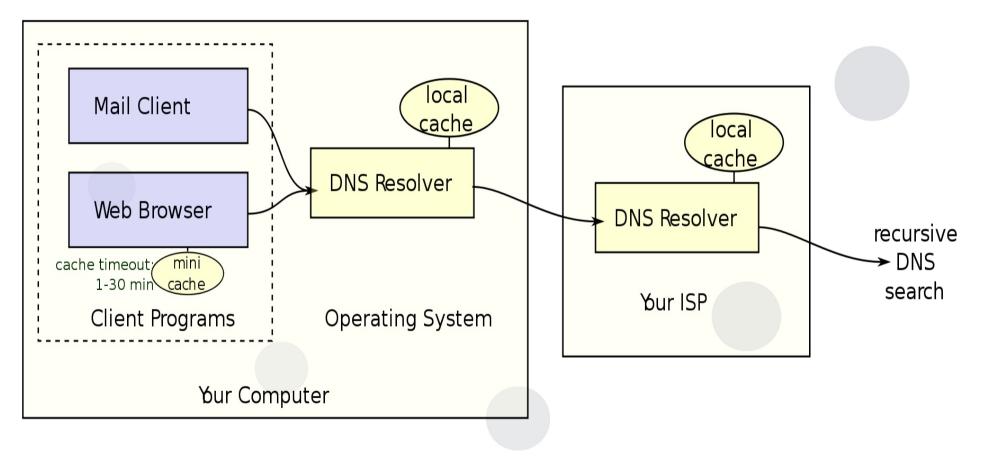
DNS cache poisoning


CZ.NIC Ondrej Filip / ondrej.filip@nic.cz Study by Emanuel Petr – CZ.NIC labs 8 Mar 2010 ccNSO techday, Nairobi

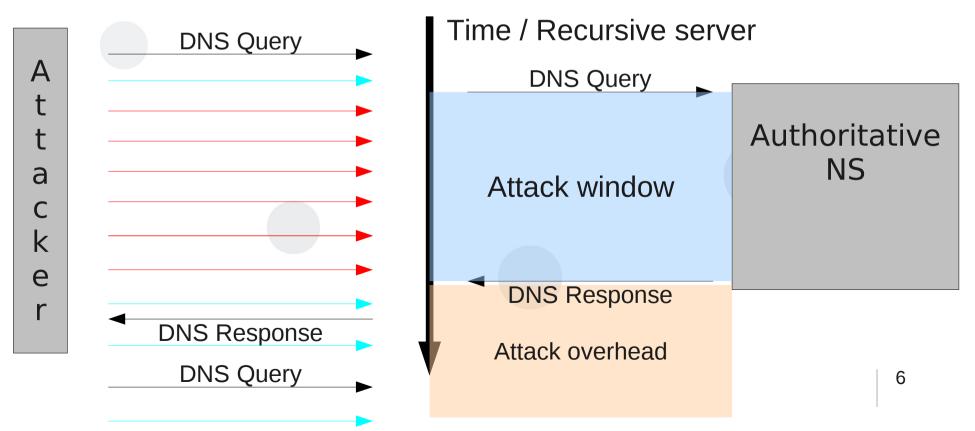
Agenda

- DNS, DNS resolver
- Cache Poisoning theory
- Kaminsky attack
- Attack theory
- Attack scenarios
- Real attacks
- Conclusion



DNS

DNS cache



Cache poisoning

- DNS Query:
 - Source Address (known)
 - Source Port (should be random 16 bits)
 - Destination Address (usually known)
 - Destination Port (known 53)
 - Query ID (should be random 16 bits)
 - Query Section (known to attacker)
- Fake response must be delivered before the regular one and have all field filled correctly.

Cache poisoning

- Just Red fake queries are effective
- Attack window
- Bandwidth of attacker (= number of sent fake queries)

Kaminsky "improvement"

- Before Attack could be repeated only after DNS record is flushed from cache (not very often)
- Kaminsky's idea: Query subdomains of the attacked domain like XY.example.net (XY random, so those are not in cache, so queries are sent)
- Fake data in Authority Records and Additional Records

Attack theory

- Brutal force attack try all possibilities
- Generate queries and try to forge the Response
- Guess Source Port (1024-65535) and Query ID (0-65535)
- Source Port and Query ID are random
- Used modified implementation from Evgeniy Polyakov
 of cache poisoning
- DoS attack done by 'Distributed DNS Flooder v0.1b by Extirpater'

Attack theory (II)

• Time of successful attack

$$H = \frac{N}{(1000/W)}$$

- H time of attack (sec)
- N number of 'attack windows' necessary for forging at least one fake response
- W width of 'attack window' (ms) + overhead (ms) can be measured

Attack theory (III)

Number of 'attack windows'

$$N = \frac{\log\left(1 - Q\right)}{\log\left(1 - P\right)}$$

- Q probability of success (like 95%, 99% etc.)
- P probability of guessing ID, Port and Destination Address

Attack theory (IV)

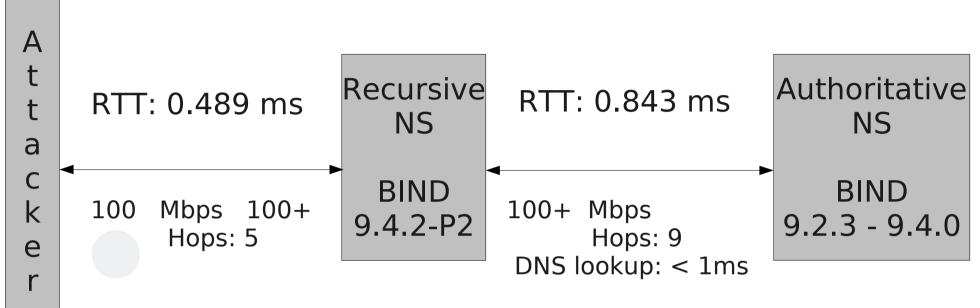
• Probability of guessing ID, Port and Dest Address

$$P = \frac{F}{D * U * S}$$

- F number of fake queries in a windows can be measured
- D number of possible IDs (65535)
- U number of ports (65535 1024)
- S number of authoritative servers

Attack theory (V)

• Whole formula

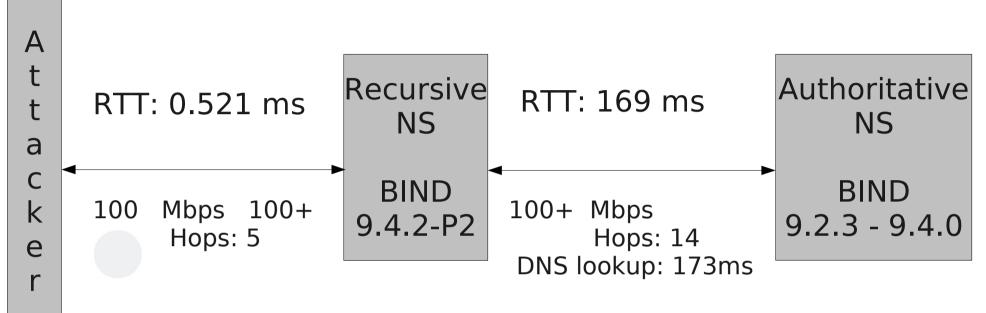

$$H = \frac{\frac{\log(1 - Q)}{F}}{\frac{\log(1 - \frac{F}{D * U * S})}{1000/W}}$$

- We know D, U, S
- We set Q
- We need to measure F and W

Testing scenarios

- Real network not laboratory
- Through real Internet eXchange Point NIX.CZ (about 130Gbps peak traffic) - www.nix.cz
- 2 authoritative servers with almost equal RTT
- Fake queries with only one authoritative server address
- Average DNS message size 125B
- Port 1024 65535
- ID 0 65535

Testing scenario I.

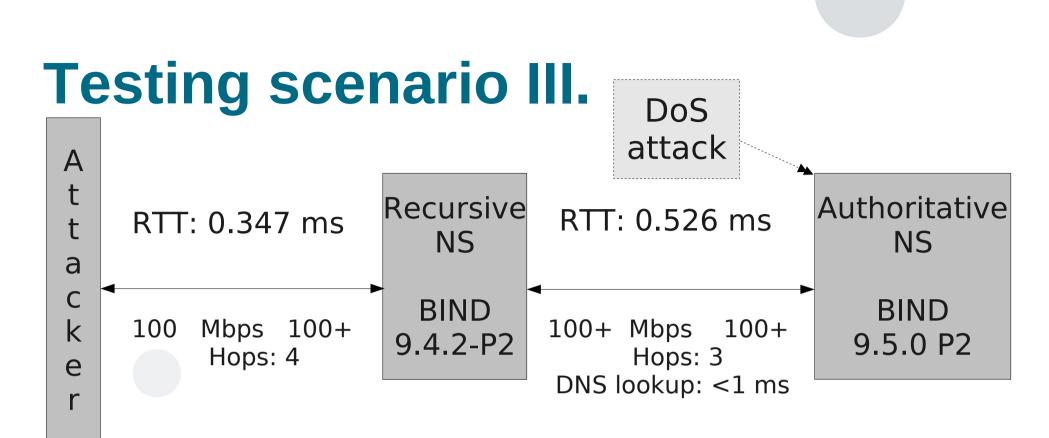

- Unpleasant scenario for the attacker small attack window
- Attacker on 100Mbps network

Testing scenario I.

Testing Scenario 1	Average	Std deviation
Window width	1.041 ms	0.096
# of fake queries per window	57	6
Stream of fake responses	55.05 Mbps	3.86
Overhead per window	10.451 ms	1.599

Success probability	
99 %	2 169 hours (~ 90.4 days)
95 %	1 411 hours (~ 58.8 days)
90 %	1 084 hours (~ 45.2 days)

Testing scenario II.



- Authoritative severs distant
- Attacker on 100Mbps network

Testing scenario II.

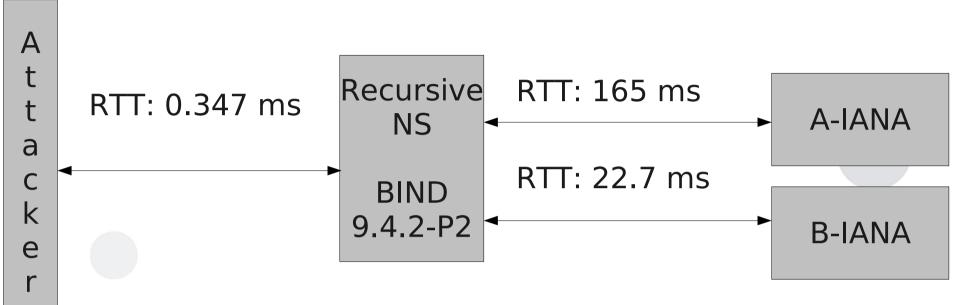
Average	Std deviation
163.78 ms	13.965
8560	761
52.30 Mbps	2.00
3.650 ms	0.592
	163.78 ms 8560 52.30 Mbps

Success probability	
99 %	211 hours (~ 8.8 days)
95 %	138 hours (~ 5.7 days)
90 %	106 hours (~ 4.4 days)

- Hard scenario BUT
- ... DoS flood against authoritative servers

Testing scenario III. (before DoS)

Testing Scenario 1	Average	Std deviation
Window width	0.579 ms	0.038
# of fake queries per window	37	4
Stream of fake responses	64.22 Mbps	0.62
Overhead per window	1.179 ms	0.074


Testing scenario III. (with DoS)

Testing Scenario 1	Average	Std deviation
Window width	731 ms	1239.457
# of fake queries per window	47331	80270
Stream of fake responses	64.67 Mbps	0.36
Overhead per window	3.519 ms	0.822

Testing scenario III.

Success P	w/o DoS	With DoS
99 %	512 hours (~ 21.3 days)	145 hours (~ 6.0 days)
95 %	333 hours (~ 13.9 days)	94 hours (~ 3.9 days)
90 %	256 hours (~ 10.7 days)	73 hours (~ 3.0 days)

Real attack I.

- Attack against domain example.net
- b.iana-servers.net preffered
- No port randomization on recursive DNS

Real attack I. - w/o randomization

Fake responses	Attack window	<pre># of delivered fake responses</pre>	Attack time			
stream (Mbps)	(ms)		test1	test2	test3	test4
34.16	23 - 27	746 - 865	2	1	3	6
10.72	19 - 32	202 - 335	3	18	9	8
1.68	25 - 26	41 - 42	34	32	7	5
0.56	27 - 28	13 - 14	193	76	601	152

Real attack I. - with randomization

Test no.	Response stream	Attack window	# of fake responses per window	Attack time
1	85.31 Mbps	45.49	3 820	25 h 40 min (59 %)
2	14.34 Mbps	102.241	1 466	64 h 3 min (32 %)
3	14.80 Mbps	684.982	10 139	25 h 0 min (15 %)
4	14.80 Mbps	597.701	8 845	95 h 52 min (45 %)
5	14.15 Mbps	650.851	9 207	50 h 41 min (26 %)
6	14.47 Mbps	504.132	7 293	248 h 30 min (78 %)

Remark about costs

- We
- 2 server 3000 USD
- 2x server hosting monthly 3000 USD/month
- 3 weeks of work 1 person (all scenarios, network setup, document)
- Attacker
 - Can make it even cheaper
 - 1 server etc.
 - 2500 USD

What affects attack success?

- Balance of authoritative server (RTT)
- Higher number of authoritative servers
- Low RTT and high capacity for authoritative servers
- Source address filtering
- Port and ID randomization; test:

dig +short txidtest.dns-oarc.net TXT

dig +short porttest.dns-oarc.net TXT

- Bandwidth of attacker
- Monitoring
- And of course DNSSEC

Conclusion

- "After-Kaminsky" patches do not solve the problem
- DNS is still vulnerable
- You can make attacker's live harder
- But you cannot avoid cache poisoning
- Attacker with cheap equipment can successfully attack any domain in days
- Implement DNSSEC!

Questions?

Thank you

(Study will soon appear at http://labs.nic.cz)

Ondrej Filip ondrej.filip@nic.cz http://www.nic.cz